Organic weed control in cranberries

Kim Patten
WSU
“Organic Weed Control”

- Manuka oil @ 8, 16, 32 and 64 oz/ac on lotus with 2 surfactants
 - Higher rates were OK, but Lotus will grow out of treatment effects relatively quickly. Frequent re-treatment needed
 - Surfactant emulsion problem, make sure that you have an emulsion before spraying.
 - Stuff is expensive
 - Might work on young weeds.
“Organic Weed Control”

• Soil pH/ elemental Sulfur
 – See following figure.
Concerns with using soil sulfur

• Hydrogen sulfide generate if wet condition
 – Toxic to cranberry roots
 – Best timing to avoid H2S
 • Low rates (100-200 lbs) elemental sulfur (organic label)
 • Frequent applications (4-6 weeks) until pH drops
 • Wait until beds are well drained, avoid wet spots

• May take 1-2 years for weed control,
• both granular and spray S work
 – Make sure the granular is readily dissolvable
 – Spray S is fast acting and work well

• Likely to work best on upland weeds
Elemental sulfur for Lotus control

Threshold ~ 4.5

Level of weed coverage as a function of soil pH modification with sulfur treatments
Summary – three years of vinegar experiment

- Timing – late April
- Rate – 4 to 5% acetic acid
- Volume – 7500 gpa
- Washoff- 2500 gpa
- Inconsistent effects occurred on highly saturated and poorly drained peat or muck soils.
- Most consistent efficacy occurred on sandy well drained soils.
Vinegar for False lily-of-the-valley control
Best treatments of several experiments

<table>
<thead>
<tr>
<th>Date of treatment</th>
<th>% Acetic acid</th>
<th>Application volume (gpa)</th>
<th>Washoff Volume (gpa x10³)</th>
<th>Lily (% control)</th>
<th>Vine damage rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/25/04</td>
<td>3</td>
<td>8000</td>
<td>2500</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>3/23/05</td>
<td>4</td>
<td>5000</td>
<td>2500</td>
<td>89</td>
<td>2.1</td>
</tr>
<tr>
<td>4/20/05</td>
<td>4</td>
<td>6000</td>
<td>2500</td>
<td>97</td>
<td>3.3</td>
</tr>
</tbody>
</table>

*1=none, 5=dead

2006 Treatments – 3, 4 & 5 % acetic acid @ 7500 gpa; 5% @ 5000 gpa, all with 2500 gpa washoff (late March/early April).
False lily-of-the-valley control and cranberry vine damage

Best treatments of several experiments

<table>
<thead>
<tr>
<th>Date of treatment</th>
<th>% Acetic acid</th>
<th>Application volume (gpa)</th>
<th>Washoff Volume (gpa x10³)</th>
<th>Lily (% control)</th>
<th>Vine damage rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/25/04</td>
<td>3</td>
<td>8000</td>
<td>2500</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>3/23/05</td>
<td>4</td>
<td>5000</td>
<td>2500</td>
<td>89</td>
<td>2.1</td>
</tr>
<tr>
<td>4/20/05</td>
<td>4</td>
<td>6000</td>
<td>2500</td>
<td>97</td>
<td>3.3</td>
</tr>
</tbody>
</table>

*1=none, 5=dead

2006 Treatments – 3, 4 & 5 % acetic acid @ 7500 gpa; 5% @ 5000 gpa, all with 2500 gpa washoff (late March/early April).
Cranberry phytotoxicity rating

1- none, 5= dead

<table>
<thead>
<tr>
<th>Acetic acid concentration</th>
<th>site 1</th>
<th>site 2</th>
<th>site 3</th>
<th>site 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% 7500 gpa</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4% 7500 gpa</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3% 7500 gpa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5% 5000 gpa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
False lily-of-the-valley control and cranberry vine damage

best treatments of several experiments

<table>
<thead>
<tr>
<th>Date of treatment</th>
<th>% Acetic acid</th>
<th>Application volume (gpa)</th>
<th>Washoff Volume (gpa x10³)</th>
<th>Lily (% control)</th>
<th>Vine damage rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/25/04</td>
<td>3</td>
<td>8000</td>
<td>2500</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>3/23/05</td>
<td>4</td>
<td>5000</td>
<td>2500</td>
<td>89</td>
<td>2.1</td>
</tr>
<tr>
<td>4/20/05</td>
<td>4</td>
<td>6000</td>
<td>2500</td>
<td>97</td>
<td>3.3</td>
</tr>
</tbody>
</table>

*1=none, 5=dead

2006 Treatments – 3, 4 & 5 % acetic acid @ 7500 gpa; 5% @ 5000 gpa, all with 2500 gpa washoff (late March/early April).
% lily control - 2006

Acetic acid concentration

- Site 1
- Site 2
- Site 3
- Site 4

Acetic acid concentration:
- 5% 7500 gpa
- 4% 7500 gpa
- 3% 7500 gpa
- 5% 5000 gpa
Cranberry phytotoxicity rating
1- none, 5= dead

Cranberry phytotoxicity rating
1- none, 5= dead

Acetic acid concentration

- 5% 7500 gpa
- 4% 7500 gpa
- 3% 7500 gpa
- 5% 5000 gpa
Summary – three years of vinegar experiment

- Timing – late April
- Rate – 4 to 5% acetic acid
- Volume – 7500 gpa
- Washoff – 2500 gpa
- Inconsistent effects occurred are on highly saturated & poorly drained peat or muck soils.
- Most consistent efficacy occurred on sandy well drained soils.