Cranberry Pest Management in Wisconsin

2010

Dan Mahr
Patricia McManus
Jed Colquhoun
Roger Flashinski
Contents

Pest management and pesticides, 1
 Integrated pest management, 1
 Federal pesticide-use law, 1
 Wisconsin’s training and certification program, 1
 Wisconsin pesticide laws and regulations, 2
 Pesticides and community right-to-know, 2
 Worker Protection Standard (WPS) for agricultural pesticides, 3
 Oral notification and posting, 3
 Restricted entry interval (REI), 4
 Pesticide tolerance levels, 4
 Pesticide toxicity, 4
 Human poisoning, 5
 Pesticide safety, 5
 Pesticide accidents, 6
 Pesticides and endangered species, 7
 Pesticide drift, 7
 Pesticides and groundwater, 8
 Calibrating pesticide equipment, 8
 Cleaning pesticide sprayers, 8
 Preparing pesticide sprayers for storage, 9
 Pesticide disposal, 9
 A final word, 10

Disease management, 13
 Fungicide update, 13
 Disease notes, 13
 Cranberry disease management recommendations, 15

Insect management, 17
 Insect monitoring and identification, 17
 Occasional pests, 17
 Insecticide update, 18
 Pheromone-mediated mating disruption, 21
 Insecticides and pollination, 21
 Cranberry insect management recommendations, 22

Weed management, 24
 Cultural control, 24
 Chemical control, 24

Not all cranberry pests will be present or economically important in your planting every year. Use the enclosed information and spray schedules as a guide in planning your own pest management program to fit your specific needs for the 2010 season.

It is important to keep careful records on chemicals used, strengths, amounts applied, and application dates. These records will be useful when planning future pest control practices.

Growers who use the chemical treatments described in this publication assume full responsibility for their use according to all current manufacturer label instructions. The Environmental Protection Agency (EPA) approves these instructions and their registration number appears on the label.

IN THE EVENT OF A PESTICIDE EMERGENCY, REFER TO PAGES 5–6.

Recommendations in this publication are current as of November 15, 2009.
Pest management and pesticides

Controlling a pest, be it a weed, an insect, or a disease, is only part of a total pest management program. Pest control is a corrective measure; you use pesticides or some other control method to reduce a damaging (or potentially damaging) pest population. Pest management, however, includes preventative measures as well.

The primary goal of your pest management program is to maintain pest damage at an acceptable level. Eradication of pests is rarely possible or feasible. In fact, our attempts at eradication may create more problems than they solve (pesticide resistance, secondary pest outbreaks, etc.). Pesticides are vital, effective tools for agriculture and for the production of our nation’s food and fiber, but they can no longer be viewed as a cure-all for all of our pest problems. Rather, they must be viewed in the context of a total pest management program.

Integrated pest management

Integrated pest management (IPM) is the coordinated use of multiple pest control methods. By becoming familiar with the crop, the pest, and all available control tactics, you can develop and implement a sound IPM program that will help you apply pesticides only when necessary.

Federal pesticide-use law

When Congress amended the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) in 1972, it included a mandate for the Environmental Protection Agency (EPA) to evaluate all new and existing pesticide products for potential harm they may cause. It also made it illegal to use, except as provided by FIFRA, any pesticide in a manner inconsistent with its labeling. Deviations from the label not recognized by FIFRA are a violation of the law.

The Food Quality Protection Act (FQPA) of 1996 strengthens the system that regulates pesticide residues on food. Recognizing that pesticide residues are present in more sources than just food, the FQPA sets limits on the total exposure from residues found in food, drinking water, and nondietary sources (such as household, landscape, and pet uses). As a result, the more uses a particular pesticide has, the greater the chance its total exposure will be met and, thus, some or all of its uses will be cancelled.

If, during the pesticide registration process, the EPA finds a product to generally cause unreasonable adverse effects on the environment, including injury to the applicator, it will be classified as restricted-use. Because restricted-use products can be used only by certified applicators, the FIFRA amendments also called for each state to develop a program for training and certifying pesticide applicators. The certification program is designed to ensure that users of restricted-use products are properly qualified to handle and apply these materials safely and efficiently. A current list of restricted-use pesticides registered for use in Wisconsin may be downloaded from the Pesticide Applicator Training (PAT) website (ipcm.wisc.edu/pat).

In Wisconsin, responsibility for training lies with the University of Wisconsin-Extension’s PAT program, while actual certification is the responsibility of the Wisconsin Department of Agriculture, Trade, and Consumer Protection (WDATCP). The Wisconsin Pesticide Law requires that all commercial applicators for hire participate in the training and certification process if they intend to use any pesticide in the state of Wisconsin, whether or not it is restricted-use.
Since 1977, the PAT program has trained over 205,000 Wisconsin applicators in the safe handling of pesticides. The training prepares the applicators for the written certification exam administered by the WDATCP, which enforces Wisconsin's pesticide regulations.

The selection, use, and potential risks of pesticides vary depending on the application method and what it is you want to protect from pests. Therefore, there is a separate training manual and certification exam for 21 pest control categories, including categories for: agricultural producers, the agricultural industry (10 categories), in and around commercial and residential buildings (6 categories), in right-of-way and surface waters (3 categories), and preserving wood. Certification is valid for 5 years, after which you can recertify by passing an exam based on a revised training manual.

The regulated community—including pesticide manufacturers, dealers, and applicators—strongly support training and certification as a way to protect people and the environment while ensuring that pesticides remain an option in pest management. Nearly 75% of applicators surveyed at live training sessions said that they had already adopted or plan to adopt all 24 pesticide use practices listed on the survey as a direct result of Wisconsin's trainings; of the remaining applicators, over 90% said that they plan to adopt at least one additional use practice. We encourage all applicators to take advantage of the training and certification process, whether or not you use restricted-use pesticides. For information about the Wisconsin PAT program, contact your county Extension agent or visit ipcm.wisc.edu/pat. For information on Wisconsin’s licensing and certification program, search for “pesticide certification” on datcp.state.wi.us.

Operating under the provisions of the Wisconsin Pesticide Law and Administrative Rule, Chapter ATCP 29 (Register, May 1998), the WDATCP has primary responsibility for pesticide use and control in the state. The Wisconsin Department of Natural Resources (WDNR) has responsibility for pesticide use involving “waters of the state,” the control of birds and mammals, and pesticide and container disposal. The Wisconsin Division of Emergency Management (WDEM) has responsibility for helping communities evaluate their preparedness for responding to accidental releases of hazardous compounds, including pesticides, under Title III of the EPA’s Superfund Amendments and Reauthorization Act (SARA). The Wisconsin Department of Transportation (WDOT) has responsibility for regulating the transportation of pesticides listed as hazardous materials (shipping papers, vehicle placarding, etc.), and for issuing commercial driver’s licenses. It is your responsibility to become familiar with all pertinent laws and regulations affecting pesticide use in Wisconsin.

To help communities evaluate their preparedness for responding to chemical spills, Congress passed the Emergency Planning and Community Right-to-Know Act (EPCRA). This law is part of a much larger legislation called the Superfund Amendments and Reauthorization Act (SARA) and is often referred to as Title III of SARA. Title III sets forth requirements for reporting of hazardous substances stored in the community and for developing an emergency response plan.

The first step in emergency planning is to know which chemicals can cause health problems and environmental damage if accidentally released. The EPA prepared a list of such chemicals and called them extremely hazardous substances. These substances are subject to emergency planning and the threshold planning quantity, the smallest amount of a substance which must be reported. Some of the chemicals listed are commonly used in agricultural production (see table 1).
Table 1. Examples of agricultural chemicals subject to Title III of SARA

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Trade name</th>
<th>Threshold planning quantity (lb or gal of product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethoate</td>
<td>Dimethoate 4EC</td>
<td>125 gal</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>Thiodan 50W</td>
<td>20 lb</td>
</tr>
<tr>
<td>Paraquat</td>
<td>Gramoxone Inteon</td>
<td>5 gal</td>
</tr>
</tbody>
</table>

A complete list of EPA’s extremely hazardous substances is available from the Local Emergency Planning Committee (LEPC) in your county or from the EPA website: www.epa.gov/emergencies/content/epcra.

Any facility, including farms, that produces, uses, or stores any of these substances in a quantity at or greater than their threshold planning quantity must notify the WDEM and their LEPC that it is subject to the emergency planning notification requirements of Title III of SARA.

In addition to emergency planning notification, agricultural service businesses with one or more employees are subject to two community right-to-know reporting requirements: submission of material safety data sheets (MSDS) and submission of Tier II inventory forms. Tier II forms request specific information on each hazardous chemical stored at or above its threshold.

The federal Worker Protection Standard (WPS) for Agricultural Pesticides took effect January 1, 1995. Its purpose is to reduce the risk of employee exposure to pesticides. You are subject to the WPS if you have at least one employee who is involved in the production of agricultural plants in a nursery, greenhouse, forest, or farming operation.

The WPS requires employers to do the following:

- Display pesticide safety information in a central location.
- Train uncertified workers and handlers on general pesticide safety principles.
- Provide personal protective clothing and equipment to employees.
- Provide a decontamination site (water, soap, towels, and coveralls).
- Provide transportation to an emergency medical facility for employees who are poisoned or injured by pesticide exposure.
- Provide notification to employees about pesticide applications (see below).

For more information about the WPS and the training requirements for uncertified workers and handlers, download the revised 2005 edition of EPA’s How To Comply manual (www.epa.gov/agriculture/twor.html).

The WPS requires employers to give notice of pesticide applications to all workers who will be in a treated area or walk within 1/4 mile of a treated area during the pesticide application or during the restricted entry interval (described below). Notification may either be oral warnings or posting of warning signs at entrances to treated sites; both are necessary if the label requires dual (oral and posting) notification. A current list of dual-notice pesticides registered for use in Wisconsin may be downloaded from ipcm.wisc.edu/pat.

Wisconsin’s Agriculture, Trade & Consumer Protection (ATCP) 29 posting rule is designed to protect the general public as well as workers. Thus, it requires posting of areas treated with pesticides having a dual notification statement or, for nonagricultural pesticide applications, if the label
prescribes a restricted entry interval for that particular application. Refer to On-Farm Posting of Pesticide-Treated Sites in Wisconsin for a flow chart guiding users through a series of questions to determine when posting of treated sites is needed, what warning sign to use, and where the sign should be located. Also covered are the separate posting requirements for chemigation treatments. This publication is available from your county Extension office or online at ipcm.wisc.edu/pat.

Restricted entry interval (REI)

A restricted entry interval (REI) is the length of time that must expire after pesticide application before people can safely enter the treated site without using personal protective equipment. Pesticide residues on a treated crop or in a treated area may pose a significant hazard to workers or others who enter the area after treatment. Therefore, nearly all pesticides affected by the WPS (see above) have an REI (see table 3). Check the Agricultural Use Requirements section on the label for the specific restricted entry interval for your product. These intervals must be strictly observed.

Pesticide tolerance levels

In Public Law 518, the Food and Drug Administration (FDA), a division of the U.S. Department of Health and Human Services, warns “Food shipments bearing residues of pesticide chemicals in excess of established tolerances will be contraband and subject to seizures as adulterated.” This applies to both raw and processed foods.

The amount of pesticide residue in or on a food material at harvest must fall into established tolerances, expressed in parts per million (ppm). The actual amount of pesticide chemical found in a food at harvest depends in part on the amount applied to the crop and the length of time since the last application. Therefore, growers are responsible for strictly following label information with regard to maximum spray dosage and the interval between the final pesticide application and harvest. The FDA advises pesticide users to follow directions on recently registered labels, so they don’t exceed the residue tolerances for the specific materials. Use table 3 as a guide to the interval between the last pesticide application and harvest. The pre-harvest intervals refer to pesticide use on cranberries only; other crops may have different intervals. The pesticide label also lists this information.

Pesticide toxicity

There are four common ways in which pesticides enter the human body—through the skin (dermal), the mouth (oral), the lungs (inhalation), and the eyes. Absorption through the skin is the most common route of poisoning of agricultural workers.

Perhaps the greatest hazard for the applicator is in loading and mixing the pesticide concentrate, which presents a significant risk of exposure to the chemical in its most toxic form. Although hazards associated with the actual application are frequently much less severe, they can still be substantial, especially if there is significant drift or if appropriate precautions are ignored. A pesticide may be toxic as a result of exposure to a single dose (acute toxicity) or repeated exposures over time (chronic toxicity).

Acute toxicities are normally expressed as the amount of pesticide required to kill 50% of a population of test animals (usually rats or rabbits). For oral and dermal exposure, this is referred to as the LD$_{50}$ or “lethal dose to 50%” in milligrams of toxicant per kilogram of body weight (mg/kg). For inhalation exposure, it is expressed as the LC$_{50}$ or “lethal concentration to 50%” in parts per million (ppm) of toxicant in the total volume of air when the toxicant is a gas or vapor, and in milligrams per liter (mg/l) of air or water when the toxicant is a dust or mist. **Pesticides with greater acute toxicities have lower LD$_{50}$ and/or LC$_{50}$ values; that is, it takes less of the chemical to kill 50% of the test population.**
Table 2. Toxicity categories of pesticides

<table>
<thead>
<tr>
<th>Measure of toxicity</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral LD<sub>50</sub> (mg/kg)</td>
<td>0–50</td>
<td>50–500</td>
<td>500–5,000</td>
<td>>5,000</td>
</tr>
<tr>
<td>Dermal LD<sub>50</sub> (mg/kg)</td>
<td>0–200</td>
<td>200–2,000</td>
<td>2,000–20,000</td>
<td>>20,000</td>
</tr>
<tr>
<td>Inhalation LC<sub>50</sub> gas/vapor (ppm)</td>
<td>0–200</td>
<td>200–2,000</td>
<td>2,000–20,000</td>
<td>>20,000</td>
</tr>
<tr>
<td></td>
<td>0–0.2</td>
<td>0.2–2</td>
<td>2–20</td>
<td>>20</td>
</tr>
<tr>
<td>Eye effects</td>
<td>corrosive</td>
<td>irritation persists for 7 days</td>
<td>irritation reversible within 7 days</td>
<td>no irritation</td>
</tr>
<tr>
<td>Skin effects</td>
<td>corrosive</td>
<td>severe irritation</td>
<td>moderate irritation</td>
<td>mild irritation</td>
</tr>
<tr>
<td>Signal word</td>
<td>DANGER<sup>a</sup></td>
<td>WARNING</td>
<td>CAUTION</td>
<td>CAUTION</td>
</tr>
</tbody>
</table>

mg/kg = milligrams per kilogram
ppm = parts per million
mg/l = milligrams per liter

^a Products assigned to Category I due to oral, inhalation, or dermal toxicity (as distinct from eye and skin local effects) also must have the word “poison” and the “skull and crossbones” symbol on the label.

Labels indicate the relative level of acute toxicity through the use of signal words and symbols that reflect general categories of toxicity (see table 2). The toxicity category is assigned on the basis of the highest measured toxicity, be it oral, dermal, or inhalation; effects on the eyes and external injury to the skin are also considered.

Human poisoning

In the event of human pesticide poisoning, the pesticide label is your first source of first-aid information. Always bear in mind, however, that first-aid response to pesticide exposure is not a substitute for professional medical help. Seek medical attention promptly and always be sure to give the label or labeled container to the doctor. The product’s Material Safety Data Sheet (MSDS) is a more technical document than the label, and it often contains additional treatment instructions for the attending medical professional.

Poison Control Center (1-800-222-1222). You may call the Poison Control Center at any hour for information regarding proper treatment of pesticide poisoning. While other hospitals and medical facilities may have some information, the Poison Control Center has the most complete and current files and their personnel are specifically trained to deal with poison cases.

Pesticide safety

Before you handle pesticides, stop and read the label. Labels contain human safety precaution statements and list the specific protective clothing and equipment that you need to wear. Some of the following may be label requirements; others are common-sense guidelines that will help minimize pesticide exposure to you, your co-workers, and your family and neighbors.

- Wear a long-sleeved shirt, long trousers, shoes, and socks when handling pesticides.
- Wear coveralls (fabric or chemical-resistant) over your work clothes for an added layer of protection.
- Unless the label states otherwise, always wear chemical-resistant gloves whenever you work with pesticides.
- Wear chemical-resistant footwear, gloves, eyewear, and respirator (if the label requires one) when mixing, loading, or applying pesticides.
- If you wear fabric coveralls, also wear a chemical-resistant apron when mixing and loading pesticides.
• Stand in the crosswind when mixing or loading pesticides.
• Never apply pesticides when there is the likelihood of significant drift.
• Never leave a spray tank containing a pesticide unattended.
• Avoid back-siphoning into the water source.
• Never eat, drink, or smoke when handling pesticides.
• Wash hands thoroughly after handling pesticides.
• If you splash pesticide on yourself, remove contaminated clothing immediately and wash yourself thoroughly.
• Wash contaminated clothes separately from other household laundry.
• Keep pesticides in original containers.
• Store and lock pesticides out of the reach of children.
• Observe restricted entry intervals on a treated crop or area.

Pesticide accidents

Pesticide spills. Regardless of the magnitude of a spill, the objectives of a proper response are the same—you must **control** the spill, you must **contain** it, and you must **clean it up**. A thorough knowledge of appropriate procedures will allow you to minimize the potential for adverse effects.

Report spills of any compound to the WDNR. However, you do not need to report the spill if it is completely confined within an impervious secondary containment and the spilled amount can be recovered with no discharge to the environment. On the other hand, a spill of any amount is reportable if it occurred outside of secondary containment and it harmed, or threatens to harm, human health or the environment (e.g., back siphoning). The spill is exempt from the WDNR reporting requirements if you deem the spill will not harm, or threaten to harm, human health or the environment and the amount spilled would cover less than 1 acre if applied at labeled rates and, if a SARA pesticide, is less than the reportable quantity.

Reportable spills involving SARA substances (see “Pesticides and Community Right-to-Know,” above) are also to be reported to the WDEM and to your LEPC. To simplify emergency notification requirements to state agencies, call the WDEM spill hotline (1-800-943-0003, 24-hour number) whenever a spill of any compound occurs. Calling this hotline will not, however, remove your responsibility of notifying your LEPC.

Spills of some compounds may require that you notify federal authorities by calling the National Response Center (1-800-424-8802). Your call to the WDEM spill hotline should provide you with assistance in determining whether federal authorities need to be notified.

Pesticide fires. In the event of a fire, call the fire department and clear all personnel from the area to a safe distance **upwind** from smoke and fumes. Isolate the entire area. Always inform the fire department of the nature of the pesticides involved and of any specific information that may help them in fighting the fire and protecting themselves and others from injury. For information on cleanup and decontamination, contact the WDEM and the pesticide manufacturer(s).

Livestock poisoning. When you suspect animal poisoning by pesticides, first call your veterinarian. If the cause of poisoning cannot be determined, call the WDATCP’s Animal Toxic Response Team at 608-224-4500.

Wildlife poisoning or water contamination. Contact the WDNR district office. District offices are located in Spooner, Rhinelander, Eau Claire, Green Bay, Milwaukee, and Fitchburg.
Pesticides and endangered species

Endangered and threatened species are the most vulnerable plants and animals in our native natural communities. These species are either in danger of extinction or likely to become endangered in the foreseeable future. Starting in 2010, the EPA’s Endangered Species Protection Program (ESPP) will implement county-specific bulletins to provide applicators the information they need about pesticide use limitations in their county to better protect listed species and their habitat. The first product to carry a label statement directing users to view a bulletin is methoxyfenozide (Intrepid 2F), to protect the endangered Karner blue butterfly and Hine’s emerald dragonfly. Please note that it may take several years for products with the new label to replace existing product in the channel trade. As always, pesticide users are to follow the label on the product they are using.

When using pesticides whose label statements instruct you to follow the measures contained in the ESPP Bulletin, you must either access the EPA’s Bulletins Live! website or call their toll-free number (800-447-3813) within 6 months before using the product. The bulletin will show which counties or portions of counties are affected and the use limitations for that particular product. You must use the bulletin that is valid for the month and year in which you will apply the product.

Go to www.epa.gov/espp/ for general information on the ESPP and to access bulletins Live! The WDNR is responsible for implementing ESPP for our state. For more information about protected plants, animals, and natural communities in Wisconsin, see www.dnr.wi.gov/org/land/er/biodiversity/.

Pesticide drift

It is impossible to totally eliminate pesticide drift. Drift occurs because of unforeseen wind variations and other factors, many of which are beyond the applicator’s control. People living in areas subject to pesticide drift worry about the acute and chronic effects of exposure to pesticides. State rules governing pesticide drift attempt to strike a balance between the intended benefits of pesticide use and the potential risks to those exposed to drift.

According to state law, people living adjacent to land that is aerially sprayed with pesticides can request to be notified at least 24 hours before application. Beekeepers also are entitled to notification of applications that occur within a 1.5-mile radius of their honeybee colonies. Both ground and aerial pesticide applications are subject to advance notification requirements to beekeepers who request such notification.

For ground applications, you can minimize drift by following these recommendations:

- Follow all label precautions for specific drift-reduction measures.
- Spray when wind speed is low.
- Use the maximum nozzle orifice without sacrificing pest control activity.
- Keep pressure at the lowest setting possible without distorting spray pattern and distribution.
- Use drift-control agents when permitted by product label.
- Consider using nozzles specifically designed to reduce drift.
- Leave an untreated border strip next to adjacent property.

For more information about drift—what it is, how it occurs, and drift management principles—ask for Managing Pesticide Drift in Wisconsin: Field Sprayers from your county Extension office. This publication also describes the critical role the pesticide applicator plays in deciding whether to spray when arriving at the site.
Pesticides and groundwater

Trace amounts of pesticides are appearing in our nation’s groundwater. To minimize further contamination, many pesticide labels contain precautionary statements either advising against or prohibiting use in areas vulnerable to groundwater contamination. A summary of these precautionary statements is included under “Remarks” for each pesticide in this publication.

To protect our state’s water resources, Wisconsin’s groundwater law (Act 310) created two guidelines to limit the presence of fertilizer and pesticides in groundwater: enforcement standards are maximum chemical levels allowed in groundwater and preventive action limits are set at a percentage of the enforcement standard. When contamination approaches preventive action limits, the responsible party must implement corrective measures to prevent further contamination.

Through groundwater monitoring studies, the most commonly found pesticide is atrazine. Consequently, Wisconsin implemented Chapter ATCP 30 to help minimize further contamination of our groundwater by atrazine. Under this rule, statewide rate restrictions have been implemented and, in some areas, the use of atrazine is prohibited.

Mixing and loading pesticides. Mixing and loading pesticides pose a high risk of point source contamination of ground and surface water because of the concentration, quantity, and type of pesticides that are usually handled at a mixing and loading site. To minimize this risk of environmental contamination, Wisconsin requires that certain mixing and loading sites have secondary containment.

Both private and commercial applicators are required to have a mixing and loading pad if more than 1,500 lbs. of pesticide active ingredient are mixed or loaded at any one site in a calendar year or if mixing and loading occurs within 100 feet of a well or surface water. In-field mixing is exempt from the pad requirements provided mixing or loading at the site of application occurs 100 feet or more from a well or surface water.

Agricultural Chemical Cleanup program. Cleanup of contaminated soil or of contaminated groundwater itself is costly. The Agricultural Chemical Cleanup Program (ACCP) helps ease the financial burden for facilities and farms by reimbursing them for eligible costs associated with the cleanup of sites contaminated with pesticides or fertilizers. For more information, contact the WDATCP at 608-224-4518.

Calibrating pesticide equipment

Accurate and uniform pesticide application is basic to satisfactory pest control. Too frequently a grower does not know exactly how much pesticide has been used until the application is completed. This leads to substantial monetary losses due to unnecessary pesticide and labor costs, unsatisfactory pest control resulting in reduced yields, and crop damage. Good pesticide application begins with accurate sprayer or granular applicator calibration. One method of calibration is contained in the Training Manual for the Private Applicator. It also is found in the Training Manual for the Private and Commercial Applicator: Fruit Crops. These are available at ipcm.wisc.edu/pat.

Cleaning pesticide sprayers

Thorough sprayer cleaning is necessary when switching from one pesticide type to another. This is especially important when herbicides are applied with the same equipment as fungicides or insecticides. If you apply significant quantities of different types of pesticides, reserve one sprayer for herbicides only and another for insecticides and fungicides.

Check the label for specific cleaning instructions. If none are listed, follow the guidelines listed below:
1. Park the sprayer on a wash pad and flush the tank, lines, and booms thoroughly with clean water and apply the pesticide-contaminated rinsate to sites listed on label. Simpler still, mount a clean water source on your sprayer and flush the system while in the field.

2. Select the appropriate cleaning solution for the pesticide used:

Hormone-type herbicides (e.g., 2,4-D, Banvel). Fill the sprayer with sufficient water to operate, adding 1 quart household ammonia for every 25 gallons of water. Circulate the ammonia solution through the sprayer system for 15 to 20 minutes and then discharge a small amount through the boom and nozzles. Let the solution stand for several hours, preferably overnight. (Please note: household ammonia will corrode aluminum sprayer parts.)

Other herbicides, insecticides, and fungicides. Fill the sprayer with sufficient water to operate adding .25 to 2 pounds powder detergent (liquid detergent may be substituted for powder at a rate to make a sudsy solution) for every 25 to 40 gallons of water. Circulate the detergent solution through the sprayer system for 5 to 10 minutes and then discharge a small amount through the boom and nozzles. Let the solution stand for several hours, preferably overnight.

3. Flush the solution out of the spray tank and through the boom.

4. Remove the nozzles, screens, and strainers and flush the system twice with clean water.

5. Scrub all accessible parts with a stiff bristle brush.

Preparing pesticide sprayers for storage

Before storing the sprayer at the end of the season:

1. Clean the sprayer per label instructions or as specified above.

2. Fill the sprayer with sufficient water to operate, adding 1–5 gallons of lightweight emulsifiable oil, depending upon the size of the tank. Circulate the oil/water solution through the sprayer system for 5–10 minutes.

3. Flush the solution out of the spray tank and through the boom; the oil will leave a protective coating on the inside of the tank, pump, and plumbing.

4. Remove the nozzles, screens, and strainers and place them in diesel fuel or kerosene to prevent corrosion. Cover the nozzle openings in the boom to prevent dirt from entering.

5. As an added precaution to protect pumps, pour 1 tablespoon of radiator rust–inhibitor antifreeze in each of the inlet and outlet ports. Rotate the pump several revolutions to completely coat the interior surfaces.

Pesticide disposal

It is the legal responsibility of all pesticide users to properly dispose of pesticide waste in an environmentally acceptable manner (it is illegal to bury or burn any pesticide containers in Wisconsin). Disposal is the final act of safe and judicious pesticide use.

Some pesticides are considered “hazardous” by the EPA. Disposing waste or excess resulting from use of these pesticides comes under stringent regulations of the Resource Conservation Recovery Act (RCRA). This federal law and the accompanying state law (NR 600) regulate generators of hazardous waste—those who need to dispose of hazardous pesticides.

The simplest way to avoid becoming a hazardous-waste generator is to triple rinse all pesticide containers and apply rinsates to labeled sites. If you must
generate hazardous waste, disposal procedures may differ depending on the volume of waste generated and its characteristics.

You can reduce the amount of pesticide waste (hazardous or not) by following these guidelines:

- Determine whether the pesticide you intend to use is considered hazardous by the EPA. A list of these pesticides is available from your WDNR regional office. If listed, check for alternative pesticides that are not hazardous and will provide equivalent pest control.

- Mix only the amount of pesticide needed and calibrate equipment so all solution is applied.

- Attach a clean water supply to the sprayer unit so the tank can be rinsed and the rinsate applied to the labeled site while still in the field.

- Triple rinse all pesticide containers. Even if the pesticides were hazardous, a triple-rinsed container is not hazardous waste, and you can dispose of it in a sanitary landfill.

- Don’t mix hazardous waste with other pesticide waste. This will result in the entire mixture being considered hazardous.

Wisconsin Clean Sweep program. The Wisconsin Clean Sweep program, sponsored by the WDATCP and individual counties, offers a way to dispose of most kinds of pesticide waste including liquids, dry formulations, and hazardous waste. For details on when a site will be held in your area, check with your county Extension office or visit the WDATCP website (datcp.state.wi.us) and search for “clean sweep.” Wisconsin Clean Sweep has two components: an agriculture program and a household program.

Plastic pesticide container recycling program. The best way to dispose of plastic containers is to recycle them. The Wisconsin Crop Production Association (WCPA) sponsors this program and sets up collection sites at member dealers throughout the state. This program accepts triple-rinsed (dirty containers will not be accepted) plastic pesticide containers of all sizes, including mini-bulk tanks. Farmers must work through their dealer to recycle jugs and mini-buls. Check the WCPA website (www.wicrops.org) for their summer and fall recycling schedules.

Please note that this recycling program is not a Wisconsin Clean Sweep program; waste pesticides will not be accepted at container collection or granulation sites.

Recycling mini-bulk tanks. Although mini-bulk tanks are recycled at the same time as the smaller jugs, dealers must register with WCPA at least 1 week in advance of a scheduled recycling date for all mini-bulk tanks 60 gallons and larger. Visit their website (www.wicrops.org) or call 608-249-4070 for details and the registration form.

A final word Chemical pesticides help make disease, insect, and weed management programs successful. However, pesticides present hazards to agricultural workers, the general public, and the environment. Therefore, they should be used wisely, safely, and only when needed. Proper crop management can lessen the need for pesticide use, because a well-maintained planting is less susceptible to disease, insect, and weed pests.

Note: When applying a pesticide, always follow the directions on the label. Label information changes from time to time. The current pesticide label is the final authority for safety and legality.
Table 3. Toxicity information, restricted-entry intervals and preharvest intervals of commonly used cranberry pesticides

<table>
<thead>
<tr>
<th>Common name</th>
<th>Trade name</th>
<th>Cautionary signal word</th>
<th>Oral LD₅₀* (mg/kg)</th>
<th>Dermal LD₅₀* (mg/kg)</th>
<th>Restricted-entry interval (hours)</th>
<th>Preharvest interval and limitations (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>Weedar 64</td>
<td>danger</td>
<td>1,161</td>
<td>1,544</td>
<td>48</td>
<td>NA</td>
</tr>
<tr>
<td>acephate</td>
<td>Orthene</td>
<td>caution</td>
<td>866–945</td>
<td>>10,250</td>
<td>24</td>
<td>75–90</td>
</tr>
<tr>
<td>acetamiprid</td>
<td>Assail</td>
<td>caution</td>
<td>133-886</td>
<td>>2,000</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>azoxystrobin</td>
<td>Abound</td>
<td>caution</td>
<td>>5,000</td>
<td>>4,000</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>carbaryl</td>
<td>Sevin</td>
<td>caution</td>
<td>307</td>
<td>2,000</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>Bravo, Echo, Equus</td>
<td>warning</td>
<td>9,000</td>
<td>>2,000</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>Lorsban</td>
<td>warning</td>
<td>380</td>
<td>>2,000</td>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>cethodim</td>
<td>Select Max</td>
<td>caution</td>
<td>3,610</td>
<td>>5,000</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>clopyralid</td>
<td>Stinger</td>
<td>caution</td>
<td>>5,000</td>
<td>>5,000</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>copper ammonium carbonate</td>
<td>Copper-Count-N</td>
<td>caution</td>
<td>low toxicity</td>
<td>—</td>
<td>12</td>
<td>exempt</td>
</tr>
<tr>
<td>copper hydroxide</td>
<td>Kocide, Champ, Champion</td>
<td>caution-danger</td>
<td>1,000</td>
<td>—</td>
<td>48</td>
<td>exempt</td>
</tr>
<tr>
<td>diazinon</td>
<td>D•Z•N Diazinon, Spectracide</td>
<td>caution or warning</td>
<td>66</td>
<td>379</td>
<td>12–24</td>
<td>7</td>
</tr>
<tr>
<td>dichlofluanid</td>
<td>Casoron</td>
<td>caution</td>
<td>3,160</td>
<td>—</td>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td>fenbuconazole</td>
<td>Indar</td>
<td>caution</td>
<td>4,000</td>
<td>>2,000</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>fosetyl-aluminum</td>
<td>Aliette</td>
<td>caution</td>
<td>2,860</td>
<td>>2,000</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>glyphosate</td>
<td>Roundup and others</td>
<td>caution or warning</td>
<td>4,900</td>
<td>—</td>
<td>Varies by label</td>
<td>30–180</td>
</tr>
<tr>
<td>imidacloprid</td>
<td>Admire</td>
<td>caution</td>
<td>>4,000</td>
<td>>2,000</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>indoxacarb</td>
<td>Avaunt</td>
<td>caution</td>
<td>687–1,867</td>
<td>>5,000</td>
<td>12</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 3. Toxicity information, restricted-entry intervals and preharvest intervals of commonly used cranberry pesticides (continued)

<table>
<thead>
<tr>
<th>Common name</th>
<th>Trade name</th>
<th>Cautionary signal word</th>
<th>Oral LD₅₀* (mg/kg)</th>
<th>Dermal LD₅₀* (mg/kg)</th>
<th>Restricted-entry interval (hours)</th>
<th>Preharvest intervalb (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mancozeb</td>
<td>Dithane, Manex, Manzate, Pennczeb</td>
<td>caution</td>
<td>>5,000</td>
<td>>5,000</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>mancozeb + copper hydroxide</td>
<td>ManKocide</td>
<td>danger</td>
<td>2,535</td>
<td>>5,000</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>mefanoxam</td>
<td>Ridomil Gold</td>
<td>caution</td>
<td>1,172</td>
<td>>2,020</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>mesotrione</td>
<td>Callisto</td>
<td>caution</td>
<td>>5,000</td>
<td>>5,000</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>methoxyfenozide</td>
<td>Intrepid</td>
<td>caution</td>
<td>>5,000</td>
<td>>2,000</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>napropamide</td>
<td>Devrinol</td>
<td>caution</td>
<td>5,000</td>
<td>—</td>
<td>24</td>
<td>NA</td>
</tr>
<tr>
<td>norflurazon</td>
<td>Evital</td>
<td>caution</td>
<td>8,000</td>
<td>20,000</td>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td>phosphorus acid</td>
<td>Phostrol, Prophyt</td>
<td>caution</td>
<td>>5,000</td>
<td>>4,000</td>
<td>4</td>
<td>0–3f</td>
</tr>
<tr>
<td>propiconazole</td>
<td>Tilt, PropiMax</td>
<td>warning</td>
<td>1,310</td>
<td>>5,000</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>pyriproxyfen</td>
<td>Knack</td>
<td>caution</td>
<td>3,773–4,733</td>
<td>>2,000</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>sethoxydim</td>
<td>Poast</td>
<td>warning</td>
<td>2,676–3,125</td>
<td>L</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>spinetoram</td>
<td>Delegate</td>
<td>caution</td>
<td>>5,000</td>
<td>>5,000</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>spinosad</td>
<td>Entrust, SpinTor</td>
<td>caution</td>
<td>>5,000</td>
<td>>2,000</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>tebufenozide</td>
<td>Confirm</td>
<td>caution</td>
<td>>5,000</td>
<td>>5,000</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>thiamethoxam</td>
<td>Actara</td>
<td>caution</td>
<td>>5,000</td>
<td>>2,000</td>
<td>12</td>
<td>30</td>
</tr>
</tbody>
</table>

Abbreviations: L = little or no reaction; NA = not applicable; — = unknown.

a LD₅₀ values are based on male rats except where noted.

b Days between final spray and harvest

c Not applicable.

d Maximum of one application per season. Valent products have a 75-day preharvest interval, products of other registrants have a 90-day preharvest interval.

e Exempt from tolerance—Fixed copper materials are exempt from the requirement of a tolerance when applied to growing crops in accordance with good agricultural practice. Under USDA labeling information, all fixed (basic) copper fungicides labeled for use on cranberries may be used on a “no time limitation” basis. However, we suggest these copper materials not be used after the berries start to ripen.

f Varies with manufacturer; check the label.

g Dermal LD₅₀ based on rabbits.
Disease management

At least 20 diseases have been described on cranberry in Wisconsin; all but two of these are caused by fungi. In Wisconsin, yield loss from most of the known diseases is minor and does not warrant the use of fungicides. Cottonball and some other fruit rot diseases, however, can result in significant economic losses if left unchecked. The incidence of upright dieback varies from year to year but can be damaging, especially in young plantings. Fruit rots that develop during storage—such as black rot and end rot—are important diseases of fresh-market fruit.

For effective disease management, you must identify the problem accurately before beginning treatment. The UW-Extension publications listed at the end of this booklet offer more complete information on many of the more important cranberry diseases. Compendium of Blueberry and Cranberry Diseases contains accurate descriptions and colored photographs of cranberry disease symptoms. It is available from APS Press (1-800-328-7560).

Fungicide update

The fungicide formerly known as Orbit is now being labeled and sold as Tilt. Remaining stocks of Orbit may still be used according to the label.

Indar (fenbuconazole) is very effective against cottonball, but inconsistently controls other fruit rot pathogens. Indar, Tilt, and PropiMax are sterol demethylation inhibitor fungicides. To delay the development of resistant pathogens, do not apply more than four sprays total of Indar, Tilt, and PropiMax.

Several products with the active ingredient phosphorous acid (also referred to as phosphite or phosphonate) are now registered for control of Phytophthora root and crown rot. These products resemble Aliette (fosetyl-aluminum), which has been registered on cranberry for several years. None of these has been tested in Wisconsin. Before using any fungicide for control of Phytophthora root and crown rot, other possible causes of vine death should be ruled out. Submit samples for positive diagnosis of Phytophthora and correct any water drainage problems. No fungicide will control Phytophthora if vines stand in water for several hours at a time.

Disease notes

Cottonball

On many Wisconsin marshes, cottonball occurs so infrequently that it does not require special control measures. However, on certain marshes the disease causes economic damage in the form of fruit rot and costs of removing rotten fruit. The most widely planted cultivars—including Ben Lear, McFarlin, Pilgrim, Searles, and Stevens—are susceptible to cottonball.

The fungus that causes cottonball, Monilinia oxyccisi, overwinters as sclerotia (mummies) in previous seasons’ infected berries. In spring, at the same time as budbreak, sclerotia germinate to produce small cup-like apothecia that release ascospores. The airborne ascospores infect tender young uprights that have recently emerged and cause the tip blight stage of the cottonball disease. Infected uprights turn tan and wilt from the tip back shortly before bloom. At the base of newly infected leaves is an inverted “V” pattern of tan diseased tissue characteristic of tip blight. In severely infested beds, ascospores of M. oxyccisi also may infect and kill unopened flowers, causing a flower blight symptom. Eventually, wilted shoots become covered with a white mantle of fungal spores. These spores invade flowers through stigmata (pollen-receptive surfaces of flowers). The fungus does not kill the flower but grows inside the
developing berry. These infected berries or “cottonballs” do not become noticeable until late in the season when they fail to turn red; instead, they turn yellowish and sometimes are marked with brown stripes. Removing “trash” after harvest may reduce the number of diseased fruit remaining in the bed and thereby reduce disease the following season. Cottonball can be managed with well-timed fungicide treatments applied properly.

Upright dieback

Upright dieback is characterized by yellow mottling and chlorosis of leaves, followed by bronzing and death of the entire upright. In young plantings (1–3 years old), large patches of uprights can be affected; in older plantings affected uprights are generally scattered among healthy uprights. Upright dieback seems to be worse under hot, dry conditions that are stressful to the cranberry plant. The exact cause of upright dieback is not well understood, but the fungus *Phomopsis vaccinii* has been isolated from affected plants. Several other fungi can also be isolated from plants with symptoms, but their roles in the upright dieback syndrome are not understood. Conditions that favor vigorous, but not excessive, vine growth should help vines tolerate or resist fungal infections. To help prevent upright dieback, provide adequate moisture and cool beds by sprinkling with water during hot, dry periods. Infection probably occurs during the spring as shoots are elongating, so fungicide application at this time is likely more effective than applications made later after the fungus has invaded the plant tissue.

Fruit rots

Fruit rot diseases have become troublesome for several growers, especially in central Wisconsin. The fungus *Colletotrichum*, which causes bitter rot, has been identified at many sites where more than 20% of fruit were rotted at the time of harvest. This fungus apparently produces spores and can infect cranberry for several weeks throughout the summer, making control difficult. Minimizing the time that fruit and foliage are wet (e.g., by irrigating in the morning rather than evening) should create an environment less favorable for disease development.

Of the fungicides registered for use on cranberries, chlorothalonil (Bravo, Echo, Equus) is the most effective product for fruit rot management. Bravo should be applied between midbloom and early fruit set. However, Bravo can be phytotoxic and may reduce yields if sprayed during midbloom, especially if applied in low spray volume (less than 50 gal/a). If spray volume is low, consider using Abound during midbloom, followed by Bravo during late bloom to early fruit set. Copper hydroxide was not effective in controlling storage rot in recent research in Wisconsin. Other forms of copper have not been tested.

Fungicides have been relatively ineffective at controlling black rot, a storage rot disease. Fruit infection apparently occurs late in the season or at harvest, when little or no fungicide residues remain to protect fruit. Black rot spores may be abundant in flood waters while water-raking fruit. Fruit then become infected through wounds. Therefore, try to minimize fruit injury before and during harvest. To reduce the chance of infection, dry-rake fruit that will be stored for fresh market sale, or dry fruit immediately after water-raking.

Refrigerate cranberries immediately after harvest and during storage to delay development of storage rots. Be aware, however, that these diseases can develop at low temperatures and eventually cause rotting even at near-freezing temperatures. Store fruit at 38–40°F; infected berries break down rapidly at temperatures above 55°F.

Phytophthora

Several species of the soil-inhabiting fungus-like organism *Phytophthora* have been found in Wisconsin. The species causing root rot of cranberry in Massachusetts and New Jersey, *Phytophthora cinnamomi*, has not been isolated in Wisconsin during surveys taken in the late 1980s and in 1997 and in
sporadic sampling since then. On affected plants, typical symptoms above ground include small leaves, stunted uprights, reduced flower and fruit production, and premature reddening of the foliage. Below ground, small feeder roots frequently are lacking, and runners may exhibit bluish-gray discoloration under the bark.

These symptoms occur most often on plants located in areas of a bed that are poorly drained and occasionally have standing water. Often, affected plants die and leave large areas of the bed devoid of cranberry vines. Replanting in these void areas usually is unsuccessful; instead, weeds rapidly become established and proliferate.

Although mefenoxam (Ridomil) is registered for control of Phytophthora root and runner rot, use of Ridomil in Wisconsin has not been successful in research trials. This is probably because the types of Phytophthora found in Wisconsin are not sensitive to Ridomil. However, practices aimed at soil water management, such as avoiding over-irrigation and improving soil drainage (e.g., by installing drainage tile, digging center ditches, and deepening side ditches) appear to be effective at reducing disease severity. Sanding affected areas to fill in low spots and improve drainage, and making additional fertilizer applications also may be beneficial.

Leaf and stem diseases

Three leaf diseases occasionally cause significant damage to cranberry plants in Wisconsin. Two are Protoventuria (Gibbera) leaf spot and Cladosporium leaf spot. Characteristic gray to white centers of Cladosporium leaf spots distinguish them from Protoventuria spots, which are small and red. Although no fungicide is registered specifically for controlling these two diseases, the same fungicides used for storage rots ordinarily control them.

The third leaf disease—red leaf spot—is marked by large, circular, bright red spots on the upper surface of leaves and paler red spots on the undersurface. In severe infestations, shoot tips may become infected and killed. Young plantings of ‘Ben Lear’ and ‘Stevens’ appear most susceptible, but any cultivar may develop the disease if vine growth is luxuriant. Red leaf spot is usually so sporadic and unpredictable that we do not recommend routine spraying to control it. If it does occur, the spray program for storage rots should adequately control red leaf spot.

In recent years, several growers have reported stem gall or "canker" which girdles and kills uprights. Large portions of beds can be damaged and put out of normal production for 2–3 years. The cause of stem gall is probably bacteria that produce a plant growth hormone. Stem gall seems to be worst in areas where plants have been damaged by beaters, tires, or cold injury. The bacteria infect through wounds. There are no chemical controls for these bacteria. The best management strategy is to minimize plant injury at harvest, during the winter, and in early spring.

Cranberry disease management recommendations

Always read the label before using any pesticide even if you have used the product before. Information on labels changes. The information presented in table 4 is only a guide and should be used in conjunction with specific label recommendations. Apply fungicides in sufficient water to provide adequate coverage. Most can be applied as either dilute (usually 100–300 gal/a water) or concentrate (usually 20–50 gal/a water) spray mixtures by ground equipment, by aircraft (at least 5 gal/a water), or through sprinkler irrigation systems, if permitted. Concentrate applications initially do not cover fruit and foliage as thoroughly as dilute applications, but dew, rain, or sprinkler water redistribute the fungicide so that coverage becomes comparable to that of dilute applications. The risk of phytotoxicity is greater with concentrate applications. Most cranberry fungicides are toxic to fish. Exercise caution.
Table 4. Fungicide application schedule for cranberry diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Application timing</th>
<th>Fungicide, rate/acre(^a)</th>
<th>Comments and restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cottonball</td>
<td>Budbreak (when majority of shoots show ½-inch new growth) and 14 days later</td>
<td>Indar 2F, 6.0–12.0 fl oz; Indar 75WSP, 4.0 oz; Tilt 41.8EC, 4.0–6.0 fl oz; PropiMax EC, 4.0–6.0 fl oz</td>
<td>Although sprays during budbreak may be beneficial where cottonball incidence is high, the most important sprays are during bloom. Do not apply Tilt, Indar, or PropiMax more than four times per year combined.</td>
</tr>
<tr>
<td></td>
<td>10–15% bloom and again at full bloom</td>
<td>Abound 2.08F, 6.2–15.4 fl oz</td>
<td>Applications of Abound are not permitted before bloom. See the label for specific use restrictions.</td>
</tr>
<tr>
<td>Upright dieback</td>
<td>Prior to bloom when shoots begin growth</td>
<td>Bravo WeatherStik, 4.0–6.5 pt; or Echo 720, 4.0–6.5 pt; or Echo Zn, 6.0–10.0 pt; or Equus 720, 4.0–6.5 pt; or Equus ZN, 5.75–9.25 pt</td>
<td>Chlorothalonil-based fungicides may not be used more than three times per year, and irrigation water must be held for at least 3 days following application.</td>
</tr>
<tr>
<td>Fruit rots</td>
<td>Mid- to late bloom, then at 10- to 14-day intervals</td>
<td>Bravo WeatherStik, 4.0–6.5 pt; or Bravo Ultrex, 4.8–6.0 lb; or Echo 720, 4.0–6.5 pt; or Echo Zn, 6.0–10.0 pt; or Equus 720, 4.0–6.5 pt; or Equus ZN, 5.75–9.25 pt</td>
<td>The lower rate is sufficient in most years. All chlorothalonil products have a 48-hour restricted entry interval and a 50-day preharvest interval. Do not exceed 15 lb chlorothalonil a.i. per acre per year.</td>
</tr>
<tr>
<td></td>
<td>Mid- to late bloom, then at 7- to 10-day intervals</td>
<td>Abound 2.08F, 6.2–15.4 fl oz</td>
<td>See the label for specific use restrictions, especially related to aquatic wildlife. Do not apply more than two sprays of Abound before alternating with an unrelated fungicide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Penncoczeb 80WP, 3.0–6.0 lb; or Penncoczeb 75DF, 3.0–6.0 lb; or Penncoczeb 4FL, 2.4–4.8 qt; or Dithane DF, 3.0–6.0 lb; or Dithane F-45, 2.4–4.8 qt; or Dithane M45, 3.0–6.0 lb or Mankocide DF, 10.5 lb</td>
<td>Many formulations of mancozeb are sold under various trade names. Be sure that cranberries are on the label. All mancozeb products have a 24-hour reentry period and a 30-day preharvest interval. Do not exceed 14.2 lb/a active ingredient per season. Addition of a spreader-sticker may be necessary. Mancozeb may cause some delay in coloring of fruit in the fall.</td>
</tr>
</tbody>
</table>

\(^a\)Pesticide active ingredients are listed in table 3.
Insect management

Blackheaded fireworm, cranberry fruitworm, and sparganothis fruitworm are the most important insect pests of cranberries in Wisconsin. Virtually every marsh is susceptible to attack, and economic damage can occur if controls are not adequate. Of secondary importance are spanworms and cranberry girdler. These normally occur at low levels, but if environmental conditions favor an outbreak and you don’t take appropriate controls, losses can be serious. Cranberry tipworm, white grub, cranberry weevil, sparganothis fruitworm, flea beetle, and dearness scale are more spotty in distribution but can also be damaging. Other insects occasionally cause problems.

The benefits of a pest monitoring program include more rapid and dependable detection of major and minor pests, improved timing of controls, greater flexibility in choice of control approaches, and reduced usage of pesticides when pests are absent. Delays in chemical applications will often result in increased damage. Do not rely on calendar timing of sprays—this approach may work four years out of five, but unusual weather patterns or abnormally heavy pest pressures will occasionally produce unexpected damage. Be especially vigilant early in spring for hatch of first-generation blackheaded fireworm larvae. Early warm spring weather can lead to early hatch. Sex pheromone traps are commercially available to monitor adult flight periods of blackheaded fireworm, cranberry girdler, sparganothis fruitworm, and cranberry fruitworm.

Proper pest identification also plays a role in achieving control. Although cranberry fruitworm and blackheaded fireworm are still our most serious fruit pests, we occasionally see significant damage from sparganothis fruitworm. Sparganothis fruitworm feeds on the foliage and surface of the fruit (like blackheaded fireworm), and also within the fruit (like cranberry fruitworm). Although similar in appearance to the blackheaded fireworm, sparganothis fruitworm is identified by its yellow head. Paired pale spots along the body and a more ragged chewing hole in fruit further distinguish sparganothis fruitworm from cranberry fruitworm. Sparganothis fruitworm may also cause damage to adjacent leaves, and its feeding activity can continue into the early harvest period.

Occasional pests

In addition to our most serious pests, several less-common insects can feed on cranberry plants and fruit. Although natural environmental factors often control these “occasional pests,” they can occur in sufficient numbers to cause injury. Crop consultants, IPM scouts, and growers have increasingly reported cases of unusual insects causing damage. This does not necessarily indicate an increased number of actual cases. Rather, as more people are trained in pest management and as routine IPM scouting becomes common, pest situations that were previously overlooked or misdiagnosed are recognized as caused by occasional pests. IPM practices also have led to the overall reduction in pesticide use, which sometimes allows these normally uncommon insects to increase to damaging numbers.

The occurrence of such insects is often spotty, even being confined to part of an individual bed. This emphasizes the need for monitoring all beds. Although intensive monitoring such as trapping and sweep-sampling is not necessary for all beds, they all should at least be routinely inspected visually. Further, the spotty distribution of occasional pests makes large-scale pesticide applications unnecessary and probably disruptive to natural controls. Instead, localized outbreaks should be controlled with spot treatments of the areas.
Insecticide update

United Phosphorous, Inc. (UPI) has registered the active ingredient acetamiprid on cranberry under the trade name Assail. This product is in the neonicotinoid insecticide class. Two formulations are registered: 30 SG which is a 30% active ingredient soluble granule and 70 WP which is a 70% active ingredient wettable powder. On cranberry these products are registered for the control of cranberry fruitworm and flea beetle and the suppression of fireworm. Both products have a 12 hour restricted entry interval (REI) and a 1 day preharvest interval (PHI). A maximum of two applications may be made per year. Application may be by ground or aircraft or by chemigation. Refer to table 7 for application rates. EPA has registered acetamiprid using a new protocol where certain crops are grouped together. Therefore, when looking at an Assail label, application rates and other information pertaining to cranberry will be found in a section with the heading “Strawberries and Other Low Growing Berries.”

Valent has registered a new insect growth regulator (IGR) on cranberry by the name of Knack; its common name is pyriproxyfen. It is a liquid formulation consisting of 11.23% active ingredient. It is currently registered primarily for cranberry fruitworm control. A maximum of two applications may be made per year. It has a 12 hour restricted entry interval (REI) and a 7 day preharvest interval (PHI). As an IGR, Knack is effective only against egg and immature stages of insects; it has no activity against adults. Also, effectiveness occurs during insect molting and metamorphosis, therefore there will be a lag period between application and insect death, the length of which will depend on how close a given insect is to one of these transformational events. The label recommends the first application to be at first egg laying and the second application at the end of bloom. The label also recommends that if pest pressure is high, the use of an additional, conventional insecticide may be warranted. Knack may be applied by ground equipment or aircraft, but not by chemigation.

Since 2004, Dow AgroSciences has had a supplemental label for the use on cranberry of its insect growth regulator (IGR) Intrepid. However, because of stringent endangered species protection language on the label, Intrepid use in most Wisconsin cranberry growing areas has been prohibited. The issue relates to the Karner blue, a butterfly on the Federal endangered species list that feeds on lupine that grows in sandy soils in central Wisconsin, and that is highly sensitive to methoxyfenozide, the active ingredient in Intrepid. However, in 2009 guidelines were developed to allow for usage of Intrepid in sensitive areas while at the same time protecting the Karner blue. Carefully check the Intrepid label for important information about using Intrepid in Karner blue-restricted areas. Intrepid is specifically active against Lepidoptera (moths and butterflies) and, as an IGR, it is effective only against the egg and larval stages. The current label lists fireworms, sparganothis, spanworms, and gypsy moth as target pests on cranberry. As an IGR, insect death may take a few days after application. However, Intrepid stops insect feeding within a few hours and therefore stops damage at that time. It has a 4-hour restricted entry interval (REI) and a 14- day preharvest interval (PHI). Usage is limited to a maximum of 64 fl. oz. per acre per year (4 applications at maximum label rate).

Table 5 reviews the major insecticide registrations on cranberry. The labels for each product contain additional important, specific information. Carefully read the pesticide labels to choose materials that best fit your needs and to fully understand application procedures and precautions.
<table>
<thead>
<tr>
<th>Insecticide and formulation</th>
<th>Labeled insects</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>acephate (Orthene): 75S, 97</td>
<td>fireworms, fruitworm, spanworms, sparganothis</td>
<td>Maximum of one application per year. Water soluble; should not be used with more than the recommended amount of water or wash-off may occur, particularly with sprinkler application.</td>
</tr>
<tr>
<td>acetamiprid (Assail): 30 SG, 70 WP</td>
<td>cranberry fruitworm, flea beetle, fireworm (suppression)</td>
<td>Maximum of two applications per year. Minimum of 7 days between applications.</td>
</tr>
<tr>
<td>Bacillus thuringiensis (Bt) Dipel: ES, 2X Biobit: 1.6% F, 3.2% WP</td>
<td>spanworms</td>
<td>The percent active ingredient in Biobit is about half that of Dipel; check labels for specific rates. Must have good coverage of leaf surfaces; a spreader/sticker may improve effectiveness. Most effective against young larvae. Two to three successive applications at 3- to 5-day intervals may be necessary.</td>
</tr>
<tr>
<td>carbaryl (Sevin): XLR, 4F, 80WSP</td>
<td>fireworms, fruitworm, sparganothis</td>
<td>Maximum of 10 quarts or 12.5 lb (80WSP) per acre per year.</td>
</tr>
<tr>
<td>chlorpyrifos (Lorsban): 4E</td>
<td>cranberry weevil, fireworms, fruitworm, spanworms, sparganothis</td>
<td>Maximum of two applications per year.</td>
</tr>
<tr>
<td>diazinon (D-Z-N): 50W, AG500, AG600WBC</td>
<td>blackheaded fireworm, fruitworm, tipworm</td>
<td>Current labels of some products require a minimum of 400 gal/a of finished spray, which precludes usage of low-volume spray equipment. Maximum of six applications per year and a minimum period between applications of 14 days. All formulations are very Hazardous to birds.</td>
</tr>
</tbody>
</table>

(continued)
Table 5. Currently registered insecticides for cranberries \(^a\) (continued)

<table>
<thead>
<tr>
<th>Insecticide and formulation</th>
<th>Labeled insects</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>indoxacarb (Avaunt)</td>
<td>blackheaded fireworm, cranberry weevil, spanworms</td>
<td>Eye irritant. May be applied by chemigation. Hold water for 1 day after application. Apply no more than 24 oz/a per season. Wait at least 7 days between treatments.</td>
</tr>
<tr>
<td>methoxyfenozide (Intrepid): 2F</td>
<td>blackheaded fireworm, gypsy moth, spanworms, sparganothis</td>
<td>Very selective to Lepidoptera and therefore protects natural enemies important in IPM programs. Is an insect growth regulator so death may occur a few days after application, but feeding and damage stop shortly after ingestion. Maximum of 64 fl. oz. per acre per year (four applications at maximum label rate). Be aware of application restrictions in sandy regions where the endangered Karner blue butterfly is known to occur.</td>
</tr>
<tr>
<td>phosmet (Imidan): 70W</td>
<td>blossomworm, cranberry tipworm midge, cranberry weevil, cutworms, false armyworm, fireworms, fruitworm, gypsy moth, spanworms, sparganothis</td>
<td>Maximum of 15.6 lb per season. Minimum of 10 days between successive applications. Reduced activity in alkaline spray waters, which should be buffered. Available in water-soluble bags.</td>
</tr>
<tr>
<td>pyriproxyfen (Knack)</td>
<td>cranberry fruitworm</td>
<td>Maximum of two applications per year. Minimum of 14 days between applications. Is an insect growth regulator so death may occur a few days after application. May not be applied by chemigation.</td>
</tr>
<tr>
<td>spinetoram (Delegate)</td>
<td>armyworms, fireworms, loopers (spanworms), sparganothis</td>
<td>May be applied by chemigation. Soft on beneficial insects and therefore good in IPM programs. For resistance management, do not rotate with products containing spinosad. Do not apply more than 19.5 oz/a per season, or six applications per year. Wait at least 7 days between treatments.</td>
</tr>
<tr>
<td>spinosad (SpinTor 2SC, Entrust)</td>
<td>armyworms, fireworms, leafrollers, loopers (spanworms), sparganothis</td>
<td>For pest suppression; may not provide acceptable results against high population numbers. Best timed against hatching eggs and young larvae. Entrust is USDA-approved for the National Organic Program. For resistance management, do not rotate with products containing spinetoram.</td>
</tr>
<tr>
<td>tebufenozide (Confirm): 2F</td>
<td>blossomworm, false armyworm, fireworms, fruitworms, gypsy moth, sparganothis, spanworms</td>
<td>Maximum of 64 fl oz (4 applications) per acre per year.</td>
</tr>
<tr>
<td>thiamethoxam (Actara)</td>
<td>cranberry flea beetle, cranberry weevil</td>
<td>Maximum of 8 oz per acre per year.</td>
</tr>
</tbody>
</table>

\(^a\)Refer to table 3 for restricted entry intervals and preharvest intervals; refer to table 7 for insecticide rates.
To our knowledge, there no longer are any products registered for mating disruption of either blackheaded fireworm or sparganothis fruitworm. Dow AgroSciences has discontinued the sprayable formulations originally developed by 3M Canada, and MSTRS Technologies have dropped their EPA and OMRI registrations for their metered release “baggies.” In both cases, the products were discontinued because of a lack of a viable market.

Insects are important for cranberry pollination. Active pollinators improve fruit set. Honey bees are not the only pollinators; bumble bees and other wild insects may be just as important. Whenever possible, do not apply insecticides when 2% or more of the flower buds are open or you may kill a significant number of pollinators. Similarly, do not introduce honey bees to a marsh until 10% of the flowers have opened. Remove bees immediately after pollination.

Careful monitoring of pest populations early in the season will help you plan insecticide applications to avoid the period when plants have blossoms. If you don’t monitor populations, pest outbreaks that should have been controlled may occur during blossom. In this situation, growers must decide if losses from the pest or from the lack of pollinators will be greater. If you must use an insecticide during blossom time, use those that are least toxic to bees and apply them in the evening after bees stop foraging. The next morning use sprinkler irrigation to wash off the pesticide and discourage bee foraging. Table 6 lists the relative bee toxicity of commonly used cranberry insecticides.

Wisconsin law allows beekeepers the right to request notification of pesticide application if their hives are within 1.5 miles of an application site. If someone makes such a request, you must notify them at least 24 hours prior to application. For more information on honey bees and pesticides, refer to Extension publication *Protecting Honey Bees in Wisconsin from Pesticides and Other Toxic Chemicals* (A3086).

Table 6. Relative toxicity of certain cranberry insecticides to honey bees

<table>
<thead>
<tr>
<th>Toxicity to bees</th>
<th>Insecticide</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly toxic</td>
<td>acephate,</td>
<td>Use of these pesticides at any time of day or night during blossom may result in severe bee losses. For maximum bee protection, do not use them within 7 days of blossom.</td>
</tr>
<tr>
<td></td>
<td>carbaryl,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chlorpyrifos,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diazinon,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indoxacarb,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosmet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spinetoram,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thiamethoxam</td>
<td></td>
</tr>
<tr>
<td>Moderately</td>
<td>Malathion</td>
<td>This pesticide should not be applied while bees are actively foraging, but it is relatively safe if dosage, timing, and method of application are correct.</td>
</tr>
<tr>
<td>toxic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatively</td>
<td>Bacillus</td>
<td>These products will cause a minimum amount of injury to bees.</td>
</tr>
<tr>
<td>nontoxic</td>
<td>thuringiensis,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pyriproxyfen,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tebufenozide</td>
<td></td>
</tr>
</tbody>
</table>
Cranberry insect management recommendations

Table 7 is a guide to insecticide usage on cranberries. Insecticides and rates listed reflect labeling that was accurate when this publication went to press. The grower/applicator is responsible for confirming that the intended use of a pesticide is legal. People who use information in this publication assume all responsibility for personal injury or property damage.

Table 7. Spray schedules for cranberry insects
(Where several pesticides and formulations are listed for the control of a pest, apply only one pesticide.)

<table>
<thead>
<tr>
<th>Timing of spray</th>
<th>Insect</th>
<th>Pesticide, rate/acre(^a)</th>
<th>Comments and restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed dormant (½ inch new growth)</td>
<td>cranberry weevil</td>
<td>chlorpyrifos 4E, 3.0 pt</td>
<td>Fireworm treatments normally also control weevils.</td>
</tr>
<tr>
<td></td>
<td>fireworm, sparganothis fruitworm</td>
<td>acephate 75S, 1.33 lb; or 97, 1.0 lb carbaryl 4 lb/gal, 4.0 pt; or 50WP, 6.0 lb; or 80WSP, 2.5 lb chlorpyrifos 4E, 3.0 pt *diazinon 50WP, 4.0 lb; or 4E or AG500, 4.0 pt; or AG600WBC, 54.5 fl oz indoxacarb, 6.0 fl oz phosmet 70W, 1.3–4.0 lb spinetoram WG, 3.0–6.0 oz tebufenozide 2F, 16.0 fl oz</td>
<td>Acephate is now restricted to a single application per year. Indoxacarb is not registered for sparganothis.</td>
</tr>
<tr>
<td></td>
<td>tipworm</td>
<td>*diazinon 50WP, 4.0 lb; or 4E or AG500, 6.0 pt; or AG600WBC, 54.5 fl oz</td>
<td>Diazinon has a maximum of six applications per year; allow at least 14 days between treatments.</td>
</tr>
<tr>
<td></td>
<td>spanworm</td>
<td>acephate 75S, 1.33 lb; or 97, 1.0 lb * Bacillus thuringiensis (see product labels for rates) chlorpyrifos 4E, 3.0 pt indoxacarb, 6.0 fl oz methoxyfenozide, 10–16 fl oz phosmet 70W, 1.3–4.0 lb spinetoram WG, 3.0–6.0 oz tebufenozide 2F, 16.0 fl oz</td>
<td>You can control spanworms with fireworm treatments if the treatments coincide with the youngest larval stages of spanworms. Acephate is now restricted to a single application per year. In Karner blue butterfly habitat, methoxyfenozide (Intrepid) must be used in such a way as to minimize spray drift. Refer to the Endangered Species portion of the Intrepid label to access appropriate guidelines.</td>
</tr>
</tbody>
</table>

(continued)
Table 7. Spray schedules for cranberry insects *(continued)*
(Where several pesticides and formulations are listed for the control of a pest, apply only one pesticide.)

<table>
<thead>
<tr>
<th>Timing of spray</th>
<th>Insect</th>
<th>Pesticide, rate/acre*</th>
<th>Comments and restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 7–21</td>
<td>dearness scale</td>
<td>No materials registered</td>
<td>Applying chlorpyrifos for fireworm control during this period may control scale.</td>
</tr>
<tr>
<td></td>
<td>(crawler stage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hook stage to start of blossom</td>
<td>cranberry weevil, fireworm, spanworm, sparganothis fruitworm, tipworm</td>
<td></td>
<td>Use materials, formulations, and rates listed above that are labeled for your target pests. Do not apply broad-spectrum insecticides once flowers have started to open.</td>
</tr>
<tr>
<td>Blossom</td>
<td>Protect pollinating insects. Do not use insecticides during blossom period.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After blossom</td>
<td>fireworm, sparganothis fruitworm, spanworm, tipworm</td>
<td>acephate 75S, 1.33 lb acetamiprid 30 SG, 4.0–6.9 oz; or 70 WP, 1.7–3.0 oz carbaryl 4 lb/gal, 4.0 pt; or 50WP, 6.0 lb; or 80WSP, 2.5 lb chlorpyrifos 4E, 3.0 pt *diazinon 50WP, 6.0 lb; or 4E or AG500, 6.0 pt; or AG600WBC, 54.5–82.0 fl oz phosmet 70W, 1.3–4.0 lb pyriproxyfen, 16.0 fl oz</td>
<td>Use materials and rates as listed above. Acephate is now restricted to a single application per year. Note: Rate of diazinon is higher than for other insects. Two to four applications at 7- to 10-day intervals may be needed for serious infestations. Chlorpyrifos has a 60-day preharvest interval. The phosmet label recommends using higher label rates for cranberry fruitworm.</td>
</tr>
<tr>
<td>(mid- to late July)</td>
<td>cranberry fruitworm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Restricted-use pesticide.
aPesticide trade names are listed in table 3.
Weed management

Weeds compete with cranberry vines for light, water, and nutrients. Tall weeds shade vines, reduce cranberry photosynthesis and nitrogen uptake, discourage pollinating insects, and slow the drying of rainfall, irrigation, and dew from vines. The slow drying of cranberry vines favors disease development and may impede pollen shedding. Heavy stands of weeds slow harvesting and can cause damage to fruit skin during harvest. In short, weeds reduce cranberry yield and quality. An effective cranberry weed management program uses both cultural and chemical controls.

Cultural control

Improving drainage of wet areas helps control wiregrass sedge, arrowhead, and other weeds. Increasing soil moisture reduces ragweed and goldenrod. Heavy nitrogen fertilization in June encourages barnyardgrass and other annual weeds. Too little fertilization may produce weak vines and open areas for weed invasion. Fertilization, water management, and other cultural practices that maximize cranberry growth encourage a solid canopy of cranberry vines, which will compete with weeds and reduce their density.

Soil pH. If soil pH is above 5.5, growth of some upland weeds may be reduced by lowering soil pH. Elemental sulfur is the most efficient way to reduce soil pH. Apply the sulfur in split applications of 50–100 pounds each per acre during the year when beds are dry and water is not puddled. Do not apply over 500 pounds of sulfur per acre per year. Sulfur pellets are preferred. Change in pH takes time, don’t expect immediate results. No direct pH response results from application of sulfate salts such as ammonium sulfate or potassium sulfate.

Chemical control

Before using an herbicide, read and follow the label directions! Use only registered materials. Table 8 lists herbicides that are registered for use on cranberries in Wisconsin. Products are listed alphabetically and represent treatment options for each period covered. The inclusion of product names in these tables is not an endorsement of a particular manufacturer’s brand.

Preemergence herbicides

Preemergence herbicides are only effective before weeds germinate or produce significant growth. Make applications as early as the label allows. Poor performance and vine damage caused by some preemergence herbicides can be traced to making applications too late. Where this type of control is not possible, use postemergence herbicide or wiper applications.

Casoron is widely used to control germinating weeds in Wisconsin cranberry beds. While Casoron is effective, at high rates it can damage vines and reduce yields. Use the lowest effective rate possible. In the past, only a single application per year was allowed. The new label allows for multiple applications. Allow 3–6 weeks between applications. Do not apply more than 100 lb/a (4 lb ai) in any 12-month period.

Grass control

Two herbicides designed specifically for grass control are now labeled for cranberry: Poast and Select Max. Both are labeled for bearing beds. See label for adjuvant requirements. Timing is critical; read the product label carefully and be sure to apply when grasses are at the correct stage for maximum effect. Multiple applications may be necessary for control. Vine injury may
result when applied during the heat of the day. For better results, spray in the evening when air temperatures are cool. These herbicides do not control sedges. To distinguish between grasses and sedges, roll a stem between your thumb and fingers. A grass will roll smoothly, a sedge will not.

2,4-D Most 2,4-D labels do not allow use on cranberry. Only certain granular applications of 2,4-D are allowed preemergence in Wisconsin. Granular 2,4-D must be applied before bud break to avoid herbicide injury. Liquid sprays are not legal, although a single wiper application per year of 2,4-D (Weedar 64) had been allowed under a supplemental label. You must have the current supplemental label in your possession before applying. See table 8 for details.

Glyphosate Glyphosate is the active ingredient in herbicides sold under many trade names, but only a few are registered in cranberry. Consult the label prior to use. Glyphosate is a nonselective herbicide without residual action. Plants absorb the chemical through leaves and stems, and transport it throughout the plant through the vascular system. Glyphosate acts through the root system, so weeds may take several weeks to die. Patiently wait for results.

During the production period, glyphosate is registered for wiper application only, which is effective for weeds taller than the canopy. Weeds may be wiped with glyphosate during the season up to 30 days before harvest.

After the initial treatment, spot treatment with the wiper will eliminate weeds missed or those requiring a repeat application. A repeat application may be necessary where weeds were initially dense. Consult label for surfactant requirements.

Wiper application. Wipers should deposit herbicide on as much foliage as possible while not contacting or dripping onto the vines. The degree of control is proportional to the amount of foliage wiped. Using a food-safe dye in your wiping equipment will make it easier to see where you have and have not wiped. See the label for details.

Timing is important for wiper applications. Annual weeds that are about to flower are most susceptible to control with glyphosate. Applications to young, rapidly growing plants will kill tops before the herbicide has had time to move throughout the plant for a complete kill. For most perennial weeds, July and August treatments are most effective. Note, glyphosate cannot be applied within 30 days before harvest. If weeds are still actively growing after harvest, a post-harvest wiping may help. Don’t clip weeds prior to wiping. Clipping removes foliage that could be wiped with glyphosate. Woody perennial weeds may require two to three applications per year for 2 years for complete control.

Precautions: Do not allow glyphosate to contact or drip on cranberry plants or the vines will die. Wear non-permeable rubber or plastic boots when applying glyphosate. If footwear becomes contaminated with herbicide, wash them thoroughly before walking on lawns or other desirable foliage. Mixing glyphosate with hard water that is high in calcium, iron, manganese or zinc, or with dirty water containing organic matter will reduce activity. Be sure to clean equipment thoroughly both before and after treatment.

Stinger (clopyralid) Stinger is a postemergence phenoxy-type herbicide. It is very active and will damage any vines it comes in contact with. You must have a valid Stinger 24(c) label in your possession at the time of application.

Callisto (mesotrione) Callisto may be applied to bearing or nonbearing cranberry beds for control of rushes, sedges, and several other common cranberry weeds. Callisto has both preemergent and postemergent activity.
<table>
<thead>
<tr>
<th>Application timing</th>
<th>Weeds</th>
<th>Commercial product, rate/acre</th>
<th>Active ingredient, rate/acre</th>
<th>Comments and restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>After harvest and before winter</td>
<td>wiregrass sedge</td>
<td>Casoron 4G, 100.0 lb</td>
<td>dichlobenil, 4.0 lb</td>
<td>Some injury may develop on vines. Use granular formulation. Do not use on young beds, newly sanded beds, or prior to or immediately after mowing vines. Use lower rates on sandy soil or weak vines.</td>
</tr>
<tr>
<td>Spring</td>
<td>loosestrife, northern St. Johnswort, ragweeds, smartweed, sticktites, tearthumb</td>
<td>see label for rate</td>
<td>2,4-D</td>
<td>Several granular 2,4-D formulations exist; however, most are not registered for cranberry. Ensure the product you use is registered for cranberry. See the package label for use rates and precautions. Store 2,4-D away from other pesticides and fertilizers. The volatile 2,4-D can be absorbed by other products and may result in plant injury.</td>
</tr>
<tr>
<td></td>
<td>annual grasses, bluejoint, creeping sedge, sicklegrass, turkeyfoot</td>
<td>Evital 5G, 80.0–160.0 lb</td>
<td>norflurazon, 4.0–8.0 lb</td>
<td>Use lower rates on sandy soils, weak vines, and ‘Stevens’ and ‘McFarlin’ cultivars. Expect some vine injury. Can only be applied once per year (12 months).</td>
</tr>
<tr>
<td></td>
<td>ditch stonecrop, dodder</td>
<td>Casoron 4G, 25.0 lb</td>
<td>dichlobenil, 1.0 lb</td>
<td>Apply pre-budbreak. Must be watered into the soil immediately after application. Split application may be made; allow 3–6 weeks between applications. Do not apply more than 100 lb/a per 12-month period.</td>
</tr>
</tbody>
</table>

(continued)
Table 8. Cranberry weed control—BEARING VINES (continued)

<table>
<thead>
<tr>
<th>Application timing</th>
<th>Weeds</th>
<th>Commercial product, rate/acre</th>
<th>Active ingredient, rate/acre</th>
<th>Comments and restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring (cont.)</td>
<td>annual grasses</td>
<td>Select Max, 9.0–16.0 fl oz</td>
<td>clethodim, 0.068–0.121 lb</td>
<td>Apply in 5–40 gal/a of solution to actively growing weeds. Always include nonionic surfactant at 0.25% v/v. The 9 oz rate is effective for small annual grasses. Use the 12 oz rate for larger or perennial grasses. Do not exceed 16 oz per application. If needed, wait at least 14 days before second application. Do not apply between hook and fruit set. Treat at least 30 days before harvest.</td>
</tr>
<tr>
<td></td>
<td>perennial grasses</td>
<td>Select Max, 12.0–16.0 fl oz</td>
<td>clethodim, 0.091–0.121 lb</td>
<td></td>
</tr>
<tr>
<td>Spring through August 15</td>
<td>broadleaf weeds, brush, grasses, sedges</td>
<td>See label for rate</td>
<td>glyphosate</td>
<td>Wiper application only. Wipe weeds above the cranberries with appropriate equipment. Do not apply glyphosate within 30 days of harvest. Read and follow label directions carefully. Consult label for surfactant requirements.</td>
</tr>
<tr>
<td>Late June through July</td>
<td>tall broadleaf weeds</td>
<td>Weedar 64, 33% solution (1 part Weedar 64, 2 parts water)</td>
<td>2,4-D</td>
<td>Wiper application only. Wipe weeds above the cranberries with appropriate equipment. Do not apply more than once per year. Do not allow the solution to touch or drip onto vines. You must have a current supplemental label in your possession at application.</td>
</tr>
<tr>
<td></td>
<td>clover, goldenrod</td>
<td>Stinger 3EC</td>
<td>clopyralid</td>
<td>Do not apply Stinger from one week prior to bloom until one week after bloom. You must have a valid Stinger 24(c) label for cranberries in Wisconsin in your possession at application. See label for application details. Do not apply within 50 days of harvest.</td>
</tr>
<tr>
<td>After budbreak, but not less than 45 days prior to flooding or harvest</td>
<td>rushes, sedges, and several other common weeds</td>
<td>Callisto, up to 8 fl oz</td>
<td>mesotrione, up to 0.25 lb</td>
<td>Pre- and postemergent activity. Apply no more than two applications per crop year and not more than 16 fl oz/a total Callisto product per year. If two applications are made they must be made no closer than 14 days apart. See label for adjuvant recommendations and other restrictions.</td>
</tr>
</tbody>
</table>
Table 9. Cranberry weed control—NONBEARING VINES

<table>
<thead>
<tr>
<th>Application timing</th>
<th>Weeds</th>
<th>Commercial product, rate/acre</th>
<th>Active ingredient, rate/acre</th>
<th>Comments and restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>After planting</td>
<td>germinating grasses, sedges, etc.</td>
<td>Devrinol 50DF, 6.0 lb</td>
<td>napropamide, 3.0 lb</td>
<td>Must be watered into the soil within 24 hours or it decomposes with ultraviolet light.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evital 5G, 40.0–80.0 lb</td>
<td>norflurazon, 2.0–4.0 lb</td>
<td>Irrigate immediately after application. Some vine injury may occur. Can only be applied once per year (12 months).</td>
</tr>
<tr>
<td></td>
<td>annual grasses</td>
<td>Select Max, 9.0–16.0 fl oz</td>
<td>clethodim, 0.068–0.121 lb</td>
<td>Apply in 5–40 gal/a of solution to actively growing weeds. Always include nonionic surfactant at 0.25% v/v. The 9 oz rate is effective for small annual grasses. Use the 12 oz rate for larger or perennial grasses. Do not exceed 16 oz per application. If needed, wait at least 14 days before second application. Do not apply between hook and fruit set.</td>
</tr>
<tr>
<td></td>
<td>perennial grasses</td>
<td>Select Max, 12.0–16.0 fl oz</td>
<td>clethodim, 0.091–0.121 lb</td>
<td></td>
</tr>
<tr>
<td>After budbreak, but not less than 45 days prior to flooding in fall or winter</td>
<td>rushes, sedges, and several other common weeds</td>
<td>Callisto, up to 8 fl oz</td>
<td>mesotrione, up to 0.25 lb</td>
<td>Pre- and postemergent activity. Apply no more than two applications per crop year and not more than 16 fl oz/a total Callisto product per year. If two applications are made they must be made no closer than 14 days apart. See label for adjuvant recommendations and other restrictions.</td>
</tr>
</tbody>
</table>

Abbreviations used in this publication

- D=dust, G=granules
- DF=dry flowable
- E or EC=emulsifiable concentrate
- F=flowable
- LC=liquid concentrate
- S=solution or sprayable
- SC= soluble concentrate
- WBC=water-based concentrate
- WP=wettable powder
More information
For detailed information about cranberry diseases, see the following Extension publications:

Cottonball Disease of Cranberry (A3194)
Cranberry Fruit Rot Diseases in Wisconsin (A3745)
Cranberry Stem Gall (A3795)
Fungal Leaf Spot Diseases of Cranberry in Wisconsin (A3711)

References to pesticide products in this publication are for your convenience and are not an endorsement of one product over other similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Copyright © 2010 by the Board of Regents of the University of Wisconsin System doing business as the division of Cooperative Extension of the University of Wisconsin-Extension. All rights reserved. Send copyright inquiries to: Cooperative Extension Publishing, 432 N. Lake St., Rm. 227, Madison, WI 53706, pubs@uwex.edu.

Authors: Dan Mahr is professor of entomology, Patricia McManus is professor of plant pathology, Jed Colquhoun is associate professor of horticulture, and Roger Flashinski is pesticide applicator education specialist in agronomy, College of Agricultural and Life Sciences, University of Wisconsin-Madison and University of Wisconsin-Extension, Cooperative Extension. Produced by Cooperative Extension Publishing, University of Wisconsin-Extension.

Cooperative Extension publications are subject to peer review.

University of Wisconsin-Extension, Cooperative Extension, in cooperation with the U.S. Department of Agriculture and Wisconsin counties, publishes this information to further the purpose of the May 8 and June 30, 1914 Acts of Congress. An EEO/AA employer, the University of Wisconsin-Extension, Cooperative Extension provides equal opportunities in employment and programming, including Title IX and Americans with Disabilities (ADA) requirements. If you need this information in an alternative format, contact Cooperative Extension Publishing or Equal Opportunity and Diversity Programs, University of Wisconsin-Extension, 501 Extension Building, 432 N. Lake Street, Madison, WI 53706, diversity@uwex.edu, phone: (608) 262-0277, fax: (608) 262-8404, TTY: 711 Wisconsin Relay.

This publication is available from your Wisconsin county Extension office (www.uwex.edu/ces/cty) or from Cooperative Extension Publishing. To order, call toll-free: 1-877-947-7827 (WIS-PUBS) or visit our website: learningstore.uwex.edu.

A3276 Cranberry Pest Management in Wisconsin—2010